
Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

Abstract—Facial recognition technology is one of the fastest

developing technologies. It is the most widespread technology

compared to other biometric ones. Technologies based on deep

learning and neural networks have demonstrated superior

efficiency and speed when compared to traditional approaches for

recognizing persons. In this work, we introduce a light system for

real-time facial recognition with an improved recognition time. It

relies on today’s latest convolution neural networks algorithms.

The database is built based on photos from a collection of both

known people and some VggFace dataset celebrities. The system

pipeline is divided into several phases, beginning with detecting

faces in input images using the MTCNN algorithm, then aligning

and preprocessing them, extracting facial characteristics vectors

for each face using a pre-trained mobileNetV2 model, and finally

classifying faces using the SoftMax classifier layer. Evaluating its

performance on some samples, the system achieved an average

accuracy of 92.67% with an execution time of 10 milliseconds to

process an image.

Index Terms—Deep Learning, Face Recognition, MobileNetV2,

MTCNN, Real-time

I. INTRODUCTION

Face recognition technology has sparked much attention as an

effective and secret tool that provides a doorway into massive

amounts of data and enables the identification of people without

their feeling or knowledge.

Because of its simplicity, low cost, flexibility of use, and

immediate results providence, facial recognition is the most

appropriate way in the majority of cases to identify people

compared to the prevailing methods, such as fingerprints, which

require that the person’s finger be clean and place it on the

scanner, or as DNA that requires samples to be analyzed and

this it takes time and money, or such as the eye print that

requires being very close to the reading camera, or the voice

print that requires shouting sometimes and approaching the

microphone, or the RF technology that the person who may

already doubt his credibility has to take the RFID card out of

his pocket and touch the surfaces that may be contaminated.

Often there is confusion between facial identification and

facial authentication, but they are different techniques and

usually designed for different purposes. Facial authentication or

verification systems verify the person by matching his photo

with a specific identity. We see such systems in mobile phones

that are being unlocked after checking and verifying the image

of the owner's face. It is a 1:1 matching process. Face

identification systems identify a person by comparing the image

of his face with the pre-defined people in the database and

determining the identity of this person. An example of this is

the system in some universities; once the student arrives at the

university, the system recognizes him/her after analyzing

his/her facial image, and the gate automatically opens then.

Face identification is a 1: N process.

The pipeline of facial recognition systems is generally

composed of sequential steps that help capture, analyze,

compare, and match the captured face to a precompiled

database of images. Face Detection is the first stage where the

image is scanned and the face is distinguished from the rest of

the existing objects. Followed by Alignment stage where facial

landmarks are detected and localized precisely and the face is

normalized to be homogenous with the dataset. The following

stage is Feature Extraction in which the face is analyzed and

unique data is extracted and converted into vectors for

comparison. Classification is the final stage where the final

extracted data is compared with the stored database of pre-

defined people, Fig. 1.

Fig.1. Face Recognition building blocks.

II. LITERATURE REVIEW

A. Face Recognition Methods

Face detection is a kind of object detection and the primary

step in face recognition systems. It is used to determine the

existence of human faces and returns their location and sizes in

the images if they are present, and then detect and mark each of

them with a bounding box. Face Detection identifies the

required components of the image for creating a faceprint.

Algorithms of face detection fall under four main categories:

1) Knowledge-Based Methods (Rule-Based Methods)

In these methods, human faces are described based on rules

related to the structure of the human face, as well as the

A Real-time Face Recognition Based on

MobileNetV2 Model

Vafaa Sukkar1 and Ergun Ercelebi2

1,2 Department of Electrical and Electronics Engineering, University of Gaziantep, 27310 Gaziantep, Turkey

Manuscript received Jan 22, 2023; accepted August 12, 2023.

31

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

relationship and arrangement between the facial

characteristics in a typical human face.

2) Template Matching Methods

These approaches compare input images to predefined

stored template images by finding similar features and

correlating the two to detect the presence of a face based on

correlation values. These methods have problems with pose,

shape, and scale variations.

3) Appearance-Based Methods

These methods are based on the templates learned from the

training images that capture the representative variability of

the face appearance.

4) Feature-Based Methods

They locate faces by searching for invariant structural

features of the face and extracting them. These algorithms

work even with the angle and pose variations.

B. Face Recognition Methods

The facial image is obtained from the input image and

converted into numerical expression. After that, the geometry

of the face is scanned by a facial recognition algorithm to dig

up particular distinctive details and identify the key points of

the face. The extracted data of a certain face is called a face

template. Face templates are used to distinguish faces from each

other by calculating and comparing the distances between the

data of input and stored faces.

1) Local features approach

It is a part-based approach that focuses on extracting the

local features in the face like mouth, nose, and eyes and

determining their locations. The histogram of oriented

gradients (HOG)[1], Local Binary Pattern (LBP) [2,3] and

Scale Invariant Feature Transform (SIFT)[4] algorithms fall

under this field. These techniques partially overcome the

variation in illumination, pose, and facial expression. On the

other hand, they deal with high dimensional feature space,

leading to computational complexity.

2) Holistic approach

It deals with the entire face. The image face is described by

feature vectors that are converted from the matrix of pixels

representing the global information and characteristic

features of faces. Dimension reduction is the key benefit of

this approach, but there is a stability issue with rotations and

translation cases. Independent Component Analysis

(ICA)[5], Eigenfaces[6] and Principal Component Analysis

(PCA) [7] are the most common techniques of this category.

3) Hybrid approach

It is a combination of both local features and holistic

algorithms. Methods in this category utilize the strengths of

the local feature approach in overcoming problems of

recognition and the holistic approach in the reduction of

dimensionality and complexity.

Although good results are often achieved under standard

conditions, the identification of people is sometimes mistaken.

This is due to several reasons, including blurred images, lack of

proper illumination, different facial expressions, and the

position of the face in the images. All this adversely reflects on

the performance and efficiency of algorithms and prevents

proper analysis and precise results, especially in real-time

recognition.

C. Deep Learning and Convolutional Neural Network

Facial recognition techniques have undergone great changes

and evolutions throughout the years, especially in the last

decade, resulting in a rapid expansion of use in commercial

applications. Classical face recognition techniques focus on

using geometry-based methods and statistical subspaces.

However, due to variations caused by view angles, background

clutter, and occlusions, these methods reflect some failures in

representing faces. Thanks to deep learning, facial recognition

has become more powerful, and less affected by varying

conditions.

Deep learning (DL) is a categorization of the Machine

Learning classification that falls under Artificial Intelligence. It

is centered on the creation of algorithms and models that can

learn and make intelligent judgments without human

intervention. A deep learning system is a self-learning system

that relies primarily on deep neural networks and learns through

passing, processing, and filtering data within the networks.

Convolutional neural network (ConvNet, or CNN) is one of the

deep learning methods. They are similar in shape to artificial

neural networks (ANN), which are the backbone of deep

learning, as they are hierarchical. CNN, like ANN, has

learnable weights and biases. What distinguishes CNN is that it

is primarily utilized for images classification and facial

recognition issues, with an image as the input in this case. The

CNN transforms the image into a simpler form with fewer

dimensions without losing its properties, making it easier to

analyze and process.

 The ability to train CNN-based models with vast data sets to

learn the best data representation features is the primary benefit

of the deep learning-based approaches. Also, the availability of

large data sets of diverse faces images of people has contributed

to the superiority of these methods.

Convolutional neural networks[8] consist of several layers:

1) Input layer

The input image is converted into a matrix of numbers that

represent its pixels.

2) Convolutional layers

These layers extract low-level and high-level features of the

image in phases until all the characteristics are extracted.

The first convolutional layer could be confined to extracting

low-level features such as colors and edges.

3) Pooling layer

This layer sits between the convolutional and FC layers to

reduce the spatial size of the image and hence decrease the

computational cost. A pooling layer might be one of two

kinds: average pooling or max pooling.

4) Fully connected layers

These layers usually represent the last layers of CNN. The

input to these layers is the output of the last layer of the

convolution layer or pooling output (if it exists) after it is

flattened. Through training, a fully connected layer collects

extracted data from previous layers and feeds them into the

Softmax layer, which is the classification layer, Fig. 2.

With the spread and popularity of deep learning methods,

researches on facial recognition accelerated, and CNNs are

used to deal with many other issues such as objects detection,

handwritten character recognition, translations, question

answering, analysis of facial expressions, and others.

32

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

Deep learning-based methods are now the most successful

among facial recognition techniques; they provide the best

results compared to all other algorithms, especially with the

significant development in convolutional neural network

architectures such as R-CNN, Fast R-CNN, VGG16 and

ResNet50. Despite these algorithms being among the most

commonly used algorithms for face recognition, they have main

problem related to poor processing speed which make them

unapplicable in real-time cases or problems that require fast

outputs.

D. Related Work

Authors in research[9] proposed a robust face recognition

system based on CNN. Viola-Jones algorithm was used for

detecting the face. Then contrast enhancement using Histogram

Equalization proceeded to the input face. They implemented

their work on the Extended Yale B and CMU PIE face

databases. Their work achieved a recognition rate of 97.23%

and 98.38% on both VGG16 and ResNet50 architectures,

respectively.

Other researchers[10] designed a FR system that takes the

attendance automatically using deep learning technology. The

maximum recognition rate of their system was 70%. Face

detection was carried out using Haar cascade method, whereas

face recognition was performed using LBPH.

In research[11], the authors designed an attendance system

using computer vision and machine learning technology. They

used a DNN-based detector for detection and LDA and PCA

methods for feature extraction. Their FR method achieved a

real-time accuracy of 56% for MLP and SVM classifiers and

about 89% for the CNN classifier.

Fig.2. An example of a Convolutional Neural Network.

III. METHODOLOGY

This work aims to design a real-time facial recognition system

that is robust, fast, and light at the same time using predefined

CNN algorithms. The fundamental reason for this is that it is

more practical to integrate a system into any type of device,

whether it is an embedded system, a mobile device, or a

computer without GPU, regardless of its capabilities.

The proposed face recognition system begins with the input

image, where the face is detected and located using the

MTCNN algorithm. After that, the image is aligned, and the

face is cropped from it. The deep CNN model MobileNetV2 is

applied to extract features from the cropped face, and the

classification process is performed using the SoftMax layer

classifier.

A. Face Detection

We used the Multi-task Cascaded Convolutional Neural

Network (MTCNN) algorithm to efficiently search for faces in

the image, detect them and recognize their facial marks such as

eyes, lips, eyebrows, etc. MTCNN is a robust algorithm

presented to perform both face detection and alignment. It

detects faces with high speed and accuracy, and it is more potent

than other algorithms in encountering the challenges that

negatively affect the detector's efficiency, including the

conditions in which the image was taken and changes in the

face.

MTCNN is made up of three separate cascade stages of

networks. They are P-Net, R-Net, and the O-Net. The output of

one stage is the input to the next stage. Each of these networks

returns three information: a face bounding rectangle, the

probability that a particular rectangle contains a face, and five

landmarks.

For the detector to be able to detect faces of all sizes, copies

of the image at different scales are created as a first step,

resulting in an image pyramid.

The overall three stages of MTCNN, Fig. 4, are as follow:

1) Proposal network (P-Net)

It is a Fully Convolutional Network (FCN) utilized to fast

analyze the image and returns many candidate windows

with corresponding boundary box regression vectors. These

are then filtered using the Non-Maximum Suppression

(NMS) technique to downsize the candidate windows and

obtain the best boundary boxes out of the overlapping

boundary boxes.

2) Refine Network (R-Net)

It is a CNN since the dense layer exists in the architecture of

this network. The network further filters the predicted candidate

windows from the previous P-Net and provides more credible

and accurate boundary boxes accomplished with the confidence

level of each of them. The NMS is then applied again to clear

out those boundary boxes of low confidence.

3) The Output Network (O-Net)

It is more complicated CNN than R-Net, and it is the slowest

network of the three cascade networks since it aims to get more

facial features and returns locations of the five facial landmarks,

including right and left eyes, nose, right and left corners of the

33

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

mouth. After this stage, only one boundary box should remain

for each face in the image.

Fig.3. MTCNN stages.

B. Face Alignment

Facial alignment is essential as it improves the overall

performance of the recognition system and provides higher

accuracy. After the face has been discovered in the picture, it

must be centered, Fig. 4. So, the next step is to locate the face

and identify the facial markers like eyes and the nose.

Fortunately, the MTCNN algorithm locates the face and its

components; all that's left is to:

1. Use the coordinates of these facial components and

analyze their positions to estimate the required rotation angle.

2. Rotate the face so that the eyes are at the same horizontal

level.

3. Center the face in the image.

4. Cut it and change its size to fit the classification network

input size.

Fig.4. Face detection and alignment.

C. Feature Extraction and Face Classification

MobileNetV2[12]is one of the CNN models that are used for

image recognition. This algorithm has high effectiveness,

performance, and speed in extracting the features. Moreover, it

is light and applicable for mobile devices and devices of low

computational power.

Compared to the standard CNN algorithms with similar depth,

MobileNet[13] has significantly less model size and uses a

smaller number of parameters. It uses Depthwise separable

convolution, which conduces to less computational cost since it

reduces the multiplication and addition operations. Fig. 5 and

Fig. 6 show the standard convolution and the separable

depthwise convolution, respectively

Depthwise separable convolution is split into two operations:

1) Depthwise Convolution

Unlike in the normal convolutions where the convolution is

applied to all or multiple input channels at a time, in depthwise

convolution, the convolution of a kernel is performed over a

single channel. The output is then shaped by stacking the

outputs of these channels.

2) Pointwise Convolution

It is a 1x1 convolution applied at each point on the M channels

to change the size of the depthwise convolution output. The

kernel’s channels are equal to the number of input channels.

Authors of MobileNet paper show that the ratio of the total

computational cost of depthwise separable convolution

compared to normal convolution is: 1/N + 1/ Dk x Dk. When N

is larger, as in normal cases, the total cost of depthwise

separable convolution will be around ten times cheaper in

computational cost.

Fig.5. The standard convolution.

Fig.6. Separable Depthwise convolution: (a) Depthwise convolution (b)

Pointwise convolution.

MobileNetV2 architecture is introduced on the basis of

MobileNetV1 to increase the accuracy and reduce the

computational cost more. The residual connections and the

expansion layer are two new features applied to mobileNetV2

34

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

architecture. MobileNetV2 is based on two types of Bottleneck

blocks. Each block has three different convolutional layers: 1x1

Convolution with Relu6, Depthwise Convolution, and 1x1

Convolution.

MobileNetV2 network is built of 53 convolutional layers and

19 blocks. Table 1 [12] shows the model structure, with conv2d

denoting a standard 2D convolution layer, Bottleneck

representing a bottleneck residual block, and AvgPool denoting

the average pooling layer. The convolution is applied to the

input firstly using 32 filters, then the feature extraction task is

performed using the middle layers, and the classification is

accomplished using the last convolution layer. s refers to the

stride, n is the repeats, t is the expansion factor, and c is the

number of the output channels.

TABLE I

ABSORBENCY FACTOR FOR 3% CNFs FILLER LAYER

Input

H x W

number of

Input

channels

Operator s t n c

224x224 3 conv2d 2 - 1 32

112x112 32 Bottleneck 1 1 1 16

112x112 16 Bottleneck 2 6 2 24

56x56 24 Bottleneck 2 6 3 32

28x28 32 Bottleneck 2 6 4 64

14x14 64 Bottleneck 1 6 3 96

14x14 96 Bottleneck 2 6 3 160

7x7 160 Bottleneck 1 6 1 320

7x7 320 Conv2d 1 - 1 1280

7x7 1280 AvgPool - - 1 -

1x1 1280 conv2d - - 1 K

D. Transfer Learning

It is quite challenging to have that much data to train an entire

CNN network from scratch. Using a model that has previously

trained on a large dataset as the starting point for training on a

new problem is more efficient than consuming time, effort, and

power on training all of the model's layers using randomly

initialized weights. The transfer learning technique is used in

this face recognition system to save training time and avoid

overfitting by leveraging a pre-trained model that has already

learned the characteristics. The model was pre-trained on the

ImageNet dataset[14], which contains more than 14 million

images and over 22000 distinct categories. The model then

serves as the base of our custom model for recognizing faces.

IV. EXPERIMENT AND RESULTS

Experiments were done utilizing the proposed face

recognition procedure to assess the performance of the system

constructed using the proposed technique. The work was split

into a training stage and a testing stage. In the training stage, the

mobileNetV2 model that was pre-trained on the ImageNet

dataset was used as the feature extractor. The training process

was performed on the classification layers newly added to the

model after omitting the existing ones. To fine-tune it, we set

some layers as trainable. After the model was trained and

learned features, we saved it with its weights for

implementation in the testing stage, Fig. 7.

A. Software and Hardware

For the implementation of face detection MTCNN and feature

extraction MobileNetv2 algorithms, Python3 Programming

language with TensorFlow v2.5 platform, Keras library, and

Jupyter notebook were used. The training of the face

recognition model was carried out on the PRO version of

Google colaboratory of 12GB RAM and NVIDIA Tesla K80

GPU. The testing was then performed on a local machine: HP

Laptop of Intel® Core™ i7, 2.60 GHz processor, 8.00 GB

RAM, 64-bit operating system, and HP TrueVision HD

Webcam with a resolution of 1280×720 (0.922MP) for real-

time face recognition.

Fig.7. Block diagram of the training and testing phases.

B. Preparation of Dataset

The dataset prepared for training the system model was a mix

of known people and some celebrities extracted from the

VGGFace dataset. The final database consists of 1500 good-

quality faces images extracted from a set of 1532 images that

contain only one face. The sizes of faces extracted from the

images must be at least 60 px in width and 70px in hight, and

every face smaller than this size is rejected and not taken into

account. The faces images belong to 15 distinct persons

grouped in 15 folders labeled by the person's name. The images

were taken in different conditions, with different facial

expressions, poses, angles, backgrounds, and lighting

conditions. The number of images for each person was fixed to

100.

C. System Implementation

The faces were detected, aligned, cropped, preprocessed, and

then split into three sets; training set, validation set, and test sets

with weights of 80%, 10%, and 10. MobileNetV2 model was

then initialized by the pre-trained weights. For the first phase,

the training process was performed on the newly added

classifier layers to the model after truncating the pre-trained

ones and freezing the feature extractor layers. In fine-tuning

phase, some layers of the base model were unfrozen and the

model was trained again using a smaller learning rate, Fig. 8.

For computing the loss, categorical_crossentropy loss

function was used since we deal with a multi-class classification

model. Evaluating the performance of the model was done

using the accuracy function which measures the accuracy of the

model and evaluates its performance. For optimization, we

35

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

employed the RMSprop (Root Mean Square Propagation)

optimizer.

The total training epochs performed on the model is 57; 20

are the training stage epochs, and 37 are fine-tuning epochs.

The total training epochs performed on the model is 57; 20 are

the training stage epochs, and 37 are fine-tuning epochs.

Fig. 9 shows the plots of model accuracy and loss over epochs

of both training and fine-tuning stages, and they are separated

by a green line, and Table 2 summarizes the results of the

stages.

Fig.8. Proposed training work.

Fig.9. Model Accuracy and Loss after training and fine-tuning process.

TABLE II

Summary of Training and Fine-tuning Stages of MobileNetV2 model

 Training stage Fine-tuning stage

Epochs 40 40

Actual epochs 20 37

Trainable parameters 32,383,503 34,244,943

Non-trainable parameters 2,257,984 396,544

Training set
Accuracy 90.24% 95.12%

Loss 0.2980 0.1414

Validation set
Accuracy 89.84% 93.75%

Loss 0.34 0.2492

Testing set
Accuracy 90.67% 92.67%

Loss 0.32 0.25

The metrics used to evaluate the performance of the trained

model on the testing dataset are:

Precision(PRE) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall(RE) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

36

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

F1 − Score(F1) =
2 ∗ 𝑃𝑅𝐸 ∗ 𝑅𝐸

𝑃𝑅𝐸 + 𝑅𝐸

Accuracy(AC) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where TP is true positive, FP is false positive, TN is true

negative and FN is the false negative.

The summary of prediction outcomes on our classification

model is displayed in a confusion matrix that represents the

number of correct and incorrect predictions in a counted way

and separates them by each class, as illustrated in fig. 10.

Fig.10. Normalized confusion matrix for our classification problem.

Fig. 11 displays some correct and incorrect predicted images

where the incorrect prediction label is presented in red.

Fig.11. Some predicted images of the testing dataset.

D. System Testing in Real-time

The system received the loaded picture or video frame as

input. Each face of the input image was detected by the

MTCNN algorithm, resized to the specific size of 224x224

pixels to fit the input of MobileNetV2 model. The

model.predict() function mapped and predicted the test data

based on the learned labels by feeding the array into the model,

determining the prediction value, and returning the label with

the highest probability. The prediction value refers to the

similarity ratio between the input face and the persons in the

dataset. The person with the max prediction, which must be

above the threshold of 85%, is the most likely to be the true

identity. If the max prediction is less than that threshold, the

input person image is considered as unknown and belongs to no

one. Fig.12 depicts a flowchart for the real-time. And Fig. 13 is

a screenshot from our system output when tested in real-time.

Fig.12. Flowchart of the Real-time System.

Fig.13. Recognition test in real-time.

To assess and evaluate the effectiveness of our proposed

system, we compared it to VGG16 and ResNet-50 algorithms

by training them on the same dataset. Using the exact procedure

followed for MobileNetV2, we trained and fine-tuned the

selected models. The summaries of training processes of

37

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

VGG16 and ResNet50 models are shown in tables 3 and 4,

respectively.

TABLE III

Summary of Training and Fine-tuning Stages of VGG16 model

 Training stage Fine-tuning stage

Epochs 40 40

Actual epochs 37 8

Total parameters 27,830,607 27,830,607

Trainable parameters 13,115,919 20,195,343

Non-trainable parameters 14,714,688 7,635,264

Output Accuracy 97.33% 98.67%

Output Loss 0.08 0.04

TABLE IV

Summary of Training and Fine-tuning Stages of ResNet50 model

 Training stage Fine-tuning stage

Epochs 40 40

Actual epochs 39 27

Total parameters 75,238,799 75,238,799

Trainable parameters 51,651,087 68,866,575

Non-trainable parameters 23,587,712 6,372,224

Output Accuracy 94.00% 97.33%

Output Loss 0.023 0.09

The time it took to train and fine-tune the models were close

to each other because the training processes were carried out on

GPU. Resnet50 and Vgg16 models achieved higher accuracy

and less loss than MobileNetV2 model. However, all the

algorithms achieved more than 90% accuracy in both training

and testing stages. In terms of speed and fps, MobileNetV2

surpassed the other models; it was about two times faster than

Resnet-50 and three times faster than VGG16. Due to their large

sizes and number of parameters, VGG16 and Resnet-50 took a

long time to analyze and recognize faces, table 5.

TABLE V

Summary of Models performance in terms of execution time and fps

Model Execution time fps

Vgg16 0.33 s 3.011

Resnet50 0.21 s 4.707

MobileNetV2 0.09 s 11.677

V. DISCUSSIONS

We trained the classifier layers first with 20 epochs and

obtained an accuracy of 90.67%. Then we fine-tuned it with

another 37 epochs to improve it, and we could reach 92.67%

accuracy. Further increasing of epochs' number could not

improve accuracy, but instead, the model could fall in

overfitting. To enhance the system and avoid overfitting, we

increased our dataset by applying some data augmentation on

the existing images. Following face detection, we employed

face alignment to rotate and center faces in pictures as needed;

this stage aids in obtaining better results and a more accurate

representation of extracted facial features. For speeding up the

training process, we cropped all faces and extracted them from

images before feeding them to the model.

Using the Fast MTCNN algorithm in real-time testing provided

better results in terms of speed, where in the normal MTCNN

the average fps (frames per second) was 10, whereas in Fast

MTCNN, it increased four times. Previous tables reflect the

robustness of our proposed work over the other analyzed

models. Comparing the speed of our system with the other state-

of-art models, ours recognize faces with higher fps.

Considering accuracy, the results were very close to each other.

VI. CONCLUSION

The work presented in this paper uses a combination of two

deep convolutional neural networks, MTCNN for face

detection and MobileNetV2 for feature extraction, to perform a

real-time facial recognition system. Using the transfer learning

technique, pre-trained model weights of MobileNetV2 on the

ImageNet dataset were utilized as initial values for feature

extraction layers after removing its classifier and adding new

classifier layers. The model then continued learning from that

point on our dataset, consisting of 1500 images for 15 classes.

The proposed system was tested on images and live videos and

achieved an accuracy of 92.67%, with an average fps of 11.68.

REFERENCES

[1] Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for

human detection. Proceedings - 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR

2005, I. https://doi.org/10.1109/CVPR.2005.177

[2] Ojala, T., Pietikäinen, M., & Harwood, D. (1994). Performance
evaluation of texture measures with classification based on Kullback

discrimination of distributions. Proceedings - International

Conference on Pattern Recognition, 3, 582–585.
https://doi.org/10.1109/ICPR.1994.576366

[3] Bouwmans, T., Silva, C., Marghes, C., Zitouni, M. S., Bhaskar, H.,

& Frelicot, C. (2018). On the role and the importance of features for
background modeling and foreground detection. Computer Science

Review, 28, 26–91. https://doi.org/10.1016/j.cosrev.2018.01.004

[4] Lenc, L., & Král, P. (2015). Automatic face recognition system

based on the SIFT features. Computers and Electrical Engineering,

46, 256–272. https://doi.org/10.1016/j.compeleceng.2015.01.014

[5] Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face
recognition by independent component analysis. IEEE Transactions

on Neural Networks, 13(6).

https://doi.org/10.1109/TNN.2002.804287
[6] Turk, M. A., & Pentland, A. P. (1991). Face recognition using

eigenfaces. doi: 10.1109/CVPR.1991.139758

[7] Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for
the characterization of human faces. Journal of the Optical Society

of America A, 4(3), 519. https://doi.org/10.1364/josaa.4.000519

[8] Albawi, S., Mohammed, T. A. M., & Alzawi, S. (2017).
Understanding of a Convolutional Neural Network. Ieee, 16.

[9] Ilyas, B. R., Mohammed, B., Khaled, M., & Miloud, K. (2019).

Enhanced Face Recognition System Based on Deep CNN.
Proceedings - 2019 6th International Conference on Image and

Signal Processing and Their Applications, ISPA 2019, January.

https://doi.org/10.1109/ISPA48434.2019.8966797

[10] Harikrishnan, J., Sudarsan, A., Sadashiv, A., & Remya Ajai, A. S.

(2019). Vision-Face Recognition Attendance Monitoring System for

Surveillance using Deep Learning Technology and Computer
Vision. Proceedings - International Conference on Vision Towards

Emerging Trends in Communication and Networking, ViTECoN

2019, 1–5. https://doi.org/10.1109/ViTECoN.2019.8899418
[11] Damale, R. C. (2018). Face Recognition Based Attendance System

Using Machine Learning Algorithms. Iciccs, 414–419.

[12] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C.
(2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks.

Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 4510–4520.
https://doi.org/10.1109/CVPR.2018.00474

[13] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision

Applications. http://arxiv.org/abs/1704.04861

38

Balkan Journal of Electrical and Computer Engineering (BAJECE)

Volume 1 Number 1, September 2023

Copyright © INESEG

[14] Fei-Fei, L., Deng, J., & Li, K. (2010). ImageNet: Constructing a

large-scale image database. Journal of Vision, 9(8), 1037–1037.

https://doi.org/10.1167/9.8.1037

39

