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Abstract—Facial recognition technology is one of the fastest 

developing technologies. It is the most widespread technology 

compared to other biometric ones. Technologies based on deep 

learning and neural networks have demonstrated superior 

efficiency and speed when compared to traditional approaches for 

recognizing persons. In this work, we introduce a light system for 

real-time facial recognition with an improved recognition time. It 

relies on today’s latest convolution neural networks algorithms. 

The database is built based on photos from a collection of both 

known people and some VggFace dataset celebrities. The system 

pipeline is divided into several phases, beginning with detecting 

faces in input images using the MTCNN algorithm, then aligning 

and preprocessing them, extracting facial characteristics vectors 

for each face using a pre-trained mobileNetV2 model, and finally 

classifying faces using the SoftMax classifier layer. Evaluating its 

performance on some samples, the system achieved an average 

accuracy of 92.67% with an execution time of 10 milliseconds to 

process an image.  

 
 

Index Terms—Deep Learning, Face Recognition, MobileNetV2, 

MTCNN, Real-time 

 

I. INTRODUCTION 

Face recognition technology has sparked much attention as an 

effective and secret tool that provides a doorway into massive 

amounts of data and enables the identification of people without 

their feeling or knowledge.  

Because of its simplicity, low cost, flexibility of use, and 

immediate results providence, facial recognition is the most 

appropriate way in the majority of cases to identify people 

compared to the prevailing methods, such as fingerprints, which 

require that the person’s finger be clean and place it on the 

scanner, or as DNA that requires samples to be analyzed and 

this it takes time and money, or such as the eye print that 

requires being very close to the reading camera, or the voice 

print that requires shouting sometimes and approaching the 

microphone, or the RF technology that the person who may 

already doubt his credibility has to take the RFID card out of 

his pocket and touch the surfaces that may be contaminated.  

Often there is confusion between facial identification and 

facial authentication, but they are different techniques and 

usually designed for different purposes. Facial authentication or 

verification systems verify the person by matching his photo 

with a specific identity. We see such systems in mobile phones 

that are being unlocked after checking and verifying the image 

of the owner's face. It is a 1:1 matching process. Face 

identification systems identify a person by comparing the image 

of his face with the pre-defined people in the database and 

determining the identity of this person. An example of this is 

the system in some universities; once the student arrives at the 

university, the system recognizes him/her after analyzing 

his/her facial image, and the gate automatically opens then. 

Face identification is a 1: N process. 

The pipeline of facial recognition systems is generally 

composed of sequential steps that help capture, analyze, 

compare, and match the captured face to a precompiled 

database of images. Face Detection is the first stage where the 

image is scanned and the face is distinguished from the rest of 

the existing objects. Followed by Alignment stage where facial 

landmarks are detected and localized precisely and the face is 

normalized to be homogenous with the dataset. The following 

stage is Feature Extraction in which the face is analyzed and 

unique data is extracted and converted into vectors for 

comparison. Classification is the final stage where the final 

extracted data is compared with the stored database of pre-

defined people, Fig. 1. 

 

 

 
Fig.1. Face Recognition building blocks. 

 

II. LITERATURE REVIEW 

A. Face Recognition Methods 

Face detection is a kind of object detection and the primary 

step in face recognition systems. It is used to determine the 

existence of human faces and returns their location and sizes in 

the images if they are present, and then detect and mark each of 

them with a bounding box. Face Detection identifies the 

required components of the image for creating a faceprint. 

Algorithms of face detection fall under four main categories: 

1) Knowledge-Based Methods (Rule-Based Methods) 

In these methods, human faces are described based on rules 

related to the structure of the human face, as well as the 
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relationship and arrangement between the facial 

characteristics in a typical human face.  

2) Template Matching Methods  

These approaches compare input images to predefined 

stored template images by finding similar features and 

correlating the two to detect the presence of a face based on 

correlation values. These methods have problems with pose, 

shape, and scale variations. 

3) Appearance-Based Methods 

These methods are based on the templates learned from the 

training images that capture the representative variability of 

the face appearance.  

4) Feature-Based Methods 

They locate faces by searching for invariant structural 

features of the face and extracting them. These algorithms 

work even with the angle and pose variations.  

B. Face Recognition Methods 

The facial image is obtained from the input image and 

converted into numerical expression. After that, the geometry 

of the face is scanned by a facial recognition algorithm to dig 

up particular distinctive details and identify the key points of 

the face. The extracted data of a certain face is called a face 

template. Face templates are used to distinguish faces from each 

other by calculating and comparing the distances between the 

data of input and stored faces.  

1) Local features approach 

It is a part-based approach that focuses on extracting the 

local features in the face like mouth, nose, and eyes and 

determining their locations. The histogram of oriented 

gradients (HOG)[1], Local Binary Pattern (LBP) [2,3] and 

Scale Invariant Feature Transform (SIFT)[4] algorithms fall 

under this field. These techniques partially overcome the 

variation in illumination, pose, and facial expression. On the 

other hand, they deal with high dimensional feature space, 

leading to computational complexity.  

2) Holistic approach  

It deals with the entire face. The image face is described by 

feature vectors that are converted from the matrix of pixels 

representing the global information and characteristic 

features of faces. Dimension reduction is the key benefit of 

this approach, but there is a stability issue with rotations and 

translation cases. Independent Component Analysis 

(ICA)[5], Eigenfaces[6] and Principal Component Analysis 

(PCA) [7] are the most common techniques of this category. 

3) Hybrid approach 

It is a combination of both local features and holistic 

algorithms. Methods in this category utilize the strengths of 

the local feature approach in overcoming problems of 

recognition and the holistic approach in the reduction of 

dimensionality and complexity.  

Although good results are often achieved under standard 

conditions, the identification of people is sometimes mistaken. 

This is due to several reasons, including blurred images, lack of 

proper illumination, different facial expressions, and the 

position of the face in the images. All this adversely reflects on 

the performance and efficiency of algorithms and prevents 

proper analysis and precise results, especially in real-time 

recognition. 

C. Deep Learning and Convolutional Neural Network 

Facial recognition techniques have undergone great changes 

and evolutions throughout the years, especially in the last 

decade, resulting in a rapid expansion of use in commercial 

applications. Classical face recognition techniques focus on 

using geometry-based methods and statistical subspaces. 

However, due to variations caused by view angles, background 

clutter, and occlusions, these methods reflect some failures in 

representing faces. Thanks to deep learning, facial recognition 

has become more powerful, and less affected by varying 

conditions.  

Deep learning (DL) is a categorization of the Machine 

Learning classification that falls under Artificial Intelligence. It 

is centered on the creation of algorithms and models that can 

learn and make intelligent judgments without human 

intervention. A deep learning system is a self-learning system 

that relies primarily on deep neural networks and learns through 

passing, processing, and filtering data within the networks. 

Convolutional neural network (ConvNet, or CNN) is one of the 

deep learning methods. They are similar in shape to artificial 

neural networks (ANN), which are the backbone of deep 

learning, as they are hierarchical. CNN, like ANN, has 

learnable weights and biases. What distinguishes CNN is that it 

is primarily utilized for images classification and facial 

recognition issues, with an image as the input in this case. The 

CNN transforms the image into a simpler form with fewer 

dimensions without losing its properties, making it easier to 

analyze and process. 

 The ability to train CNN-based models with vast data sets to 

learn the best data representation features is the primary benefit 

of the deep learning-based approaches. Also, the availability of 

large data sets of diverse faces images of people has contributed 

to the superiority of these methods. 

Convolutional neural networks[8] consist of several layers: 

1) Input layer 

The input image is converted into a matrix of numbers that 

represent its pixels.  

2) Convolutional layers 

These layers extract low-level and high-level features of the 

image in phases until all the characteristics are extracted. 

The first convolutional layer could be confined to extracting 

low-level features such as colors and edges. 

3) Pooling layer 

This layer sits between the convolutional and FC layers to 

reduce the spatial size of the image and hence decrease the 

computational cost. A pooling layer might be one of two 

kinds: average pooling or max pooling.  

4) Fully connected layers 

These layers usually represent the last layers of CNN. The 

input to these layers is the output of the last layer of the 

convolution layer or pooling output (if it exists) after it is 

flattened. Through training, a fully connected layer collects 

extracted data from previous layers and feeds them into the 

Softmax layer, which is the classification layer, Fig. 2.  

With the spread and popularity of deep learning methods, 

researches on facial recognition accelerated, and CNNs are 

used to deal with many other issues such as objects detection, 

handwritten character recognition, translations, question 

answering, analysis of facial expressions, and others. 
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Deep learning-based methods are now the most successful 

among facial recognition techniques; they provide the best 

results compared to all other algorithms, especially with the 

significant development in convolutional neural network 

architectures such as R-CNN, Fast R-CNN, VGG16 and 

ResNet50. Despite these algorithms being among the most 

commonly used algorithms for face recognition, they have main 

problem related to poor processing speed which make them 

unapplicable in real-time cases or problems that require fast 

outputs.  

D. Related Work 

Authors in research[9] proposed a robust face recognition 

system based on CNN. Viola-Jones algorithm was used for 

detecting the face. Then contrast enhancement using Histogram 

Equalization proceeded to the input face. They implemented 

their work on the Extended Yale B and CMU PIE face 

databases. Their work achieved a recognition rate of 97.23% 

and 98.38% on both VGG16 and ResNet50 architectures, 

respectively.  

Other researchers[10] designed a FR system that takes the 

attendance automatically using deep learning technology. The 

maximum recognition rate of their system was 70%. Face 

detection was carried out using Haar cascade method, whereas 

face recognition was performed using LBPH.  

In research[11], the authors designed an attendance system 

using computer vision and machine learning technology. They 

used a DNN-based detector for detection and LDA and PCA 

methods for feature extraction. Their FR method achieved a 

real-time accuracy of 56% for MLP and SVM classifiers and 

about 89% for the CNN classifier. 

 

 
Fig.2. An example of a Convolutional Neural Network. 

 

III. METHODOLOGY 

This work aims to design a real-time facial recognition system 

that is robust, fast, and light at the same time using predefined 

CNN algorithms. The fundamental reason for this is that it is 

more practical to integrate a system into any type of device, 

whether it is an embedded system, a mobile device, or a 

computer without GPU, regardless of its capabilities. 

The proposed face recognition system begins with the input 

image, where the face is detected and located using the 

MTCNN algorithm. After that, the image is aligned, and the 

face is cropped from it. The deep CNN model MobileNetV2 is 

applied to extract features from the cropped face, and the 

classification process is performed using the SoftMax layer 

classifier.  

A. Face Detection 

We used the Multi-task Cascaded Convolutional Neural 

Network (MTCNN) algorithm to efficiently search for faces in 

the image, detect them and recognize their facial marks such as 

eyes, lips, eyebrows, etc. MTCNN is a robust algorithm 

presented to perform both face detection and alignment. It 

detects faces with high speed and accuracy, and it is more potent 

than other algorithms in encountering the challenges that 

negatively affect the detector's efficiency, including the 

conditions in which the image was taken and changes in the 

face. 

MTCNN is made up of three separate cascade stages of 

networks. They are P-Net, R-Net, and the O-Net. The output of 

one stage is the input to the next stage. Each of these networks 

returns three information: a face bounding rectangle, the 

probability that a particular rectangle contains a face, and five 

landmarks. 

For the detector to be able to detect faces of all sizes, copies 

of the image at different scales are created as a first step, 

resulting in an image pyramid. 

The overall three stages of MTCNN, Fig. 4, are as follow: 

1) Proposal network (P-Net) 

It is a Fully Convolutional Network (FCN) utilized to fast 

analyze the image and returns many candidate windows 

with corresponding boundary box regression vectors. These 

are then filtered using the Non-Maximum Suppression 

(NMS) technique to downsize the candidate windows and 

obtain the best boundary boxes out of the overlapping 

boundary boxes.  

2) Refine Network (R-Net)  

It is a CNN since the dense layer exists in the architecture of 

this network. The network further filters the predicted candidate 

windows from the previous P-Net and provides more credible 

and accurate boundary boxes accomplished with the confidence 

level of each of them. The NMS is then applied again to clear 

out those boundary boxes of low confidence. 

3) The Output Network (O-Net)  

It is more complicated CNN than R-Net, and it is the slowest 

network of the three cascade networks since it aims to get more 

facial features and returns locations of the five facial landmarks, 

including right and left eyes, nose, right and left corners of the 
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mouth. After this stage, only one boundary box should remain 

for each face in the image. 

 
Fig.3. MTCNN stages. 

 

B. Face Alignment 

Facial alignment is essential as it improves the overall 

performance of the recognition system and provides higher 

accuracy. After the face has been discovered in the picture, it 

must be centered, Fig. 4. So, the next step is to locate the face 

and identify the facial markers like eyes and the nose. 

Fortunately, the MTCNN algorithm locates the face and its 

components; all that's left is to: 

1. Use the coordinates of these facial components and 

analyze their positions to estimate the required rotation angle. 

2. Rotate the face so that the eyes are at the same horizontal 

level. 

3. Center the face in the image. 

4. Cut it and change its size to fit the classification network 

input size. 

 
Fig.4. Face detection and alignment. 

 

C. Feature Extraction and Face Classification 

MobileNetV2[12]is one of the CNN models that are used for 

image recognition. This algorithm has high effectiveness, 

performance, and speed in extracting the features. Moreover, it 

is light and applicable for mobile devices and devices of low 

computational power. 

Compared to the standard CNN algorithms with similar depth, 

MobileNet[13] has significantly less model size and uses a 

smaller number of parameters. It uses Depthwise separable 

convolution, which conduces to less computational cost since it 

reduces the multiplication and addition operations. Fig. 5 and 

Fig. 6 show the standard convolution and the separable 

depthwise convolution, respectively 

Depthwise separable convolution is split into two operations:  

1) Depthwise Convolution  

Unlike in the normal convolutions where the convolution is 

applied to all or multiple input channels at a time, in depthwise 

convolution, the convolution of a kernel is performed over a 

single channel. The output is then shaped by stacking the 

outputs of these channels. 

2) Pointwise Convolution 

It is a 1x1 convolution applied at each point on the M channels 

to change the size of the depthwise convolution output. The 

kernel’s channels are equal to the number of input channels.  

Authors of MobileNet paper show that the ratio of the total 

computational cost of depthwise separable convolution 

compared to normal convolution is: 1/N + 1/ Dk x Dk. When N 

is larger, as in normal cases, the total cost of depthwise 

separable convolution will be around ten times cheaper in 

computational cost. 

 

 
Fig.5. The standard convolution. 

 

 
Fig.6. Separable Depthwise convolution: (a) Depthwise convolution (b) 

Pointwise convolution. 
 

MobileNetV2 architecture is introduced on the basis of 

MobileNetV1 to increase the accuracy and reduce the 

computational cost more. The residual connections and the 

expansion layer are two new features applied to mobileNetV2 
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architecture. MobileNetV2 is based on two types of Bottleneck 

blocks. Each block has three different convolutional layers: 1x1 

Convolution with Relu6, Depthwise Convolution, and 1x1 

Convolution. 

MobileNetV2 network is built of 53 convolutional layers and 

19 blocks. Table 1 [12] shows the model structure, with conv2d 

denoting a standard 2D convolution layer, Bottleneck 

representing a bottleneck residual block, and AvgPool denoting 

the average pooling layer. The convolution is applied to the 

input firstly using 32 filters, then the feature extraction task is 

performed using the middle layers, and the classification is 

accomplished using the last convolution layer. s refers to the 

stride, n is the repeats, t is the expansion factor, and c is the 

number of the output channels.  

 
TABLE I 

ABSORBENCY FACTOR FOR 3% CNFs FILLER LAYER 

Input  

H x W 

number of 

Input 

channels 

Operator s t n c 

224x224 3 conv2d 2 - 1 32 

112x112 32 Bottleneck 1 1 1 16 

112x112 16 Bottleneck 2 6 2 24 

56x56 24 Bottleneck 2 6 3 32 

28x28 32 Bottleneck 2 6 4 64 

14x14 64 Bottleneck 1 6 3 96 

14x14 96 Bottleneck 2 6 3 160 

7x7 160 Bottleneck 1 6 1 320 

7x7 320 Conv2d 1 - 1 1280 

7x7 1280 AvgPool - - 1 - 

1x1 1280 conv2d - - 1 K 

 

D. Transfer Learning 

It is quite challenging to have that much data to train an entire 

CNN network from scratch. Using a model that has previously 

trained on a large dataset as the starting point for training on a 

new problem is more efficient than consuming time, effort, and 

power on training all of the model's layers using randomly 

initialized weights. The transfer learning technique is used in 

this face recognition system to save training time and avoid 

overfitting by leveraging a pre-trained model that has already 

learned the characteristics. The model was pre-trained on the 

ImageNet dataset[14], which contains more than 14 million 

images and over 22000 distinct categories. The model then 

serves as the base of our custom model for recognizing faces.  
 

IV. EXPERIMENT AND RESULTS 

Experiments were done utilizing the proposed face 

recognition procedure to assess the performance of the system 

constructed using the proposed technique. The work was split 

into a training stage and a testing stage. In the training stage, the 

mobileNetV2 model that was pre-trained on the ImageNet 

dataset was used as the feature extractor. The training process 

was performed on the classification layers newly added to the 

model after omitting the existing ones. To fine-tune it, we set 

some layers as trainable. After the model was trained and 

learned features, we saved it with its weights for 

implementation in the testing stage, Fig. 7. 

A. Software and Hardware 

For the implementation of face detection MTCNN and feature 

extraction MobileNetv2 algorithms, Python3 Programming 

language with TensorFlow v2.5 platform, Keras library, and 

Jupyter notebook were used. The training of the face 

recognition model was carried out on the PRO version of 

Google colaboratory of 12GB RAM and NVIDIA Tesla K80 

GPU. The testing was then performed on a local machine: HP 

Laptop of Intel® Core™ i7, 2.60 GHz processor, 8.00 GB 

RAM, 64-bit operating system, and HP TrueVision HD 

Webcam with a resolution of 1280×720 (0.922MP) for real-

time face recognition. 

 
Fig.7. Block diagram of the training and testing phases. 

 

B. Preparation of Dataset 

The dataset prepared for training the system model was a mix 

of known people and some celebrities extracted from the 

VGGFace dataset. The final database consists of 1500 good-

quality faces images extracted from a set of 1532 images that 

contain only one face. The sizes of faces extracted from the 

images must be at least 60 px in width and 70px in hight, and 

every face smaller than this size is rejected and not taken into 

account. The faces images belong to 15 distinct persons 

grouped in 15 folders labeled by the person's name. The images 

were taken in different conditions, with different facial 

expressions, poses, angles, backgrounds, and lighting 

conditions. The number of images for each person was fixed to 

100. 

C. System Implementation 

The faces were detected, aligned, cropped, preprocessed, and 

then split into three sets; training set, validation set, and test sets 

with weights of 80%, 10%, and 10. MobileNetV2 model was 

then initialized by the pre-trained weights. For the first phase, 

the training process was performed on the newly added 

classifier layers to the model after truncating the pre-trained 

ones and freezing the feature extractor layers. In fine-tuning 

phase, some layers of the base model were unfrozen and the 

model was trained again using a smaller learning rate, Fig. 8. 

For computing the loss, categorical_crossentropy loss 

function was used since we deal with a multi-class classification 

model. Evaluating the performance of the model was done 

using the accuracy function which measures the accuracy of the 

model and evaluates its performance. For optimization, we 
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employed the RMSprop (Root Mean Square Propagation) 

optimizer. 

The total training epochs performed on the model is 57; 20 

are the training stage epochs, and 37 are fine-tuning epochs. 

The total training epochs performed on the model is 57; 20 are 

the training stage epochs, and 37 are fine-tuning epochs. 

Fig. 9 shows the plots of model accuracy and loss over epochs 

of both training and fine-tuning stages, and they are separated 

by a green line, and Table 2 summarizes the results of the 

stages. 

 

 
Fig.8. Proposed training work. 

 
Fig.9. Model Accuracy and Loss after training and fine-tuning process. 

 
TABLE II 

Summary of Training and Fine-tuning Stages of MobileNetV2 model 

 Training stage Fine-tuning stage 

Epochs 40 40 

Actual epochs 20 37 

Trainable parameters 32,383,503 34,244,943 

Non-trainable parameters 2,257,984 396,544 

Training set 
Accuracy 90.24% 95.12% 

Loss 0.2980 0.1414 

Validation set 
Accuracy 89.84% 93.75% 

Loss 0.34 0.2492 

Testing set 
Accuracy 90.67% 92.67% 

Loss 0.32 0.25 

 

The metrics used to evaluate the performance of the trained 

model on the testing dataset are: 

Precision(PRE)  =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

Recall(RE)  =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

36



Balkan Journal of Electrical and Computer Engineering (BAJECE) 

Volume 1 Number 1, September 2023 

 

Copyright © INESEG  

F1 − Score(F1)  =
2 ∗ 𝑃𝑅𝐸 ∗ 𝑅𝐸

𝑃𝑅𝐸 +  𝑅𝐸
 

Accuracy(AC)  =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where TP is true positive, FP is false positive, TN is true 

negative and FN is the false negative. 

The summary of prediction outcomes on our classification 

model is displayed in a confusion matrix that represents the 

number of correct and incorrect predictions in a counted way 

and separates them by each class, as illustrated in fig. 10. 

 

 
Fig.10. Normalized confusion matrix for our classification problem. 

 

Fig. 11 displays some correct and incorrect predicted images 

where the incorrect prediction label is presented in red. 

 
Fig.11. Some predicted images of the testing dataset. 

 

D. System Testing in Real-time 

The system received the loaded picture or video frame as 

input. Each face of the input image was detected by the 

MTCNN algorithm, resized to the specific size of 224x224 

pixels to fit the input of MobileNetV2 model. The 

model.predict() function mapped and predicted the test data 

based on the learned labels by feeding the array into the model, 

determining the prediction value, and returning the label with 

the highest probability. The prediction value refers to the 

similarity ratio between the input face and the persons in the 

dataset. The person with the max prediction, which must be 

above the threshold of 85%, is the most likely to be the true 

identity. If the max prediction is less than that threshold, the 

input person image is considered as unknown and belongs to no 

one. Fig.12 depicts a flowchart for the real-time. And Fig. 13 is 

a screenshot from our system output when tested in real-time. 

 

 
Fig.12. Flowchart of the Real-time System. 

 

 
Fig.13. Recognition test in real-time. 

 

To assess and evaluate the effectiveness of our proposed 

system, we compared it to VGG16 and ResNet-50 algorithms 

by training them on the same dataset. Using the exact procedure 

followed for MobileNetV2, we trained and fine-tuned the 

selected models. The summaries of training processes of 
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VGG16 and ResNet50 models are shown in tables 3 and 4, 

respectively. 

 
TABLE III 

Summary of Training and Fine-tuning Stages of VGG16 model 

 Training stage Fine-tuning stage 

Epochs 40 40 

Actual epochs 37 8 

Total parameters 27,830,607 27,830,607 

Trainable parameters 13,115,919 20,195,343 

Non-trainable parameters 14,714,688 7,635,264 

Output Accuracy 97.33% 98.67% 

Output Loss 0.08 0.04 

 
TABLE IV 

Summary of Training and Fine-tuning Stages of ResNet50 model 

 Training stage Fine-tuning stage 

Epochs 40 40 

Actual epochs 39 27 

Total parameters 75,238,799 75,238,799 

Trainable parameters 51,651,087 68,866,575 

Non-trainable parameters 23,587,712 6,372,224 

Output Accuracy 94.00% 97.33% 

Output Loss 0.023 0.09 

 

The time it took to train and fine-tune the models were close 

to each other because the training processes were carried out on 

GPU. Resnet50 and Vgg16 models achieved higher accuracy 

and less loss than MobileNetV2 model. However, all the 

algorithms achieved more than 90% accuracy in both training 

and testing stages. In terms of speed and fps, MobileNetV2 

surpassed the other models; it was about two times faster than 

Resnet-50 and three times faster than VGG16. Due to their large 

sizes and number of parameters, VGG16 and Resnet-50 took a 

long time to analyze and recognize faces, table 5. 

 
TABLE V 

Summary of Models performance in terms of execution time and fps 

Model Execution time fps 

Vgg16 0.33 s 3.011 

Resnet50 0.21 s 4.707 

MobileNetV2 0.09 s 11.677 

 

V. DISCUSSIONS 

We trained the classifier layers first with 20 epochs and 

obtained an accuracy of 90.67%. Then we fine-tuned it with 

another 37 epochs to improve it, and we could reach 92.67% 

accuracy. Further increasing of epochs' number could not 

improve accuracy, but instead, the model could fall in 

overfitting. To enhance the system and avoid overfitting, we 

increased our dataset by applying some data augmentation on 

the existing images. Following face detection, we employed 

face alignment to rotate and center faces in pictures as needed; 

this stage aids in obtaining better results and a more accurate 

representation of extracted facial features. For speeding up the 

training process, we cropped all faces and extracted them from 

images before feeding them to the model. 

Using the Fast MTCNN algorithm in real-time testing provided 

better results in terms of speed, where in the normal MTCNN 

the average fps (frames per second) was 10, whereas in Fast 

MTCNN, it increased four times. Previous tables reflect the 

robustness of our proposed work over the other analyzed 

models. Comparing the speed of our system with the other state-

of-art models, ours recognize faces with higher fps. 

Considering accuracy, the results were very close to each other. 

VI. CONCLUSION 

The work presented in this paper uses a combination of two 

deep convolutional neural networks, MTCNN for face 

detection and MobileNetV2 for feature extraction, to perform a 

real-time facial recognition system. Using the transfer learning 

technique, pre-trained model weights of MobileNetV2 on the 

ImageNet dataset were utilized as initial values for feature 

extraction layers after removing its classifier and adding new 

classifier layers. The model then continued learning from that 

point on our dataset, consisting of 1500 images for 15 classes. 

The proposed system was tested on images and live videos and 

achieved an accuracy of 92.67%, with an average fps of 11.68. 
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